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ABSTRACT 

This study aims to validate the preparation approach of novel biodegradable  

polymer-bioactive ceramic composites of poly (lactic acid) (PLA), chitosan (CS), and tricalcium 

phosphate (TCP) and evaluate their suitability for Guided Bone Regeneration (GBR). GBR is a 

dental surgical procedure that uses barrier membranes to direct the growth of new bone tissues. 

Resorbable membranes eliminate the need for a second surgery that patients with non-resorbable 

membranes need. Cryomilling, a solid-state, low-temperature blending process, facilitates bulk 

fabrication by eliminating difficulties such as high viscosity, insolubility and long processing 

times. It is a cost-effective technique to generate particles with high surface area to volume ratio, 

which provide a larger area for biological activity. Electrospinning was used to fabricate fibrous 

barrier membranes using the biocomposites prepared by cryomilling. X-Ray Diffraction (XRD) 

and Differential Scanning Calorimetry (DSC) were utilized to characterize the molecular 

structures, identify the glass transition and melting temperatures and to confirm the occurrence of 

homogeneous polymer-ceramic biocomposites. Scanning Electron Microscopy (SEM) was used 

to observe the morphology of the powder composites and the electrospun membranes. RAW 264.7 

murine macrophages were used to evaluate the cytocompatibility of the biocomposites and 

quantitatively analyzed with CellTiter-Blue® (CTB®) cell viability assay. Also, MG63 cells were 

seeded on electrospun membranes to quantify the capability of the biocomposites to encourage 

cell proliferation. Coherent anti-Stokes Raman Spectroscopy (CARS) and brightfield (BF) 

microscopy were used to analyze cell proliferation on the seeded membranes qualitatively. A 21-

day In vitro degradation studies were performed and analyzed using Raman spectroscopy. CTB® 

cell viability assay carried out on the electrospun membranes revealed that the cells are viable and 
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metabolically active both at 3 and at 7 days from cell seeding indicating the suitability of the 

material for GBR. 
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CHAPTER I 

GENERAL INTRODUCTION 

1.1. Research Motivation 

In the recent years, the increasing interest in developing dental procedures for bone 

regeneration has been a consequence of the growing number of patients in need of such 

interventions. Based on the data from the 2009 and 2010 National Health and Nutrition 

Examination Survey (NHANES), Eke et al. (2012) reported that 64.7 million adults in the United 

States (U.S.) suffer from periodontitis with varying levels of severity [1]. The results of similar 

surveys only reiterate the prevalence of periodontitis and have rightly warranted attention from the 

scientific community [2-4]. 

Periodontitis is a dental disease that is characterized by the destruction of the connective tissue 

and dental bone support due to an inflammatory response to the infection caused by the activity of 

anaerobic bacteria [5, 6]. Today, periodontists use a wide variety of techniques to treat this 

condition depending on the tissue affected and the severity of damage caused to the tissues. Some 

of the common methods used are laser treatment, gum graft surgery, non-surgical treatment such 

as scaling and root planing, dental crown lengthening, pocket reduction procedures and dental 

implants [7]. However, over the past few decades, regenerative techniques have received 

significant attention for restoring the functionality and structural integrity of a diseased 

periodontium, as it could potentially solve problems such as shortage of bone grafts and graft 

rejection [8-13].  

Guided Bone Regeneration (GBR) is a surgical technique in dentistry that makes use of barrier 

membranes to exploit the inherent regenerative capability of the human body [14]. GBR has been 

able to treat various bone defects caused by periodontitis [15]. In principle, GBR uses barrier 



www.manaraa.com

2 
 

 

membranes to prevent the entry and proliferation of non-osteogenic cells into defect sites and to 

permit the growth of osteogenic cells selectively [16]. Therefore, the success of the procedure, 

amongst other factors, is also largely governed by the design and performance of the barrier 

membrane. A suitable membrane has to be biocompatible, mechanically stable and flexible during 

the time of implantation [17].  

The engineering community has been particularly interested in the development of new 

materials that could be utilized for the fabrication of barrier membranes. The number of scientific 

papers focusing on the production and evaluation of new membrane materials is a testament to the 

potential in this area [18-22]. Despite this, the “ideal” membrane has not yet been fabricated. 

Expanded polytetrafluoroethylene (e-PTFE) has by far been the most preferred material for the 

fabrication of non-resorbable membranes [23-30]. However, it has been shown that patients are 

exposed to infections when they undergo surgeries for the removal of non-resorbable membranes 

[31, 32]. Resorbable membranes have played the role of alternatives by eliminating the need for 

removal surgeries [33]. Natural polymers like chitosan, collagen and synthetic polymers like poly 

(lactic acid) (PLA), polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA) have been used 

individually or in blends for the fabrication of barrier membranes [34-44]. In the recent years, the 

addition of bioactive ceramics has been used to improve the mechanical properties and cell affinity 

of barrier membranes [45, 46]. Composite materials have thus offered researchers an opportunity 

to fabricate tailor-made membranes for specific applications.  

This study intends to validate the fabrication approach of novel biodegradable  

polymer-bioactive ceramic membranes for use in GBR. A low-temperature, solid-state, blending 

technique called cryomilling was used to generate composites made up of PLA, CS, and TCP. As 

mentioned previously, PLA has produced considerable success when used for GBR applications. 
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CS, apart from being resorbable and biocompatible, was also chosen for its antimicrobial 

properties [35]. The role of CS in cell adhesion, proliferation, and osteoblast differentiation has 

been well documented [36-38]. TCP was used as a synthetic bone substitute material to induce the 

regeneration of bone tissue [39-41]. PLA and CS have very different polarities and hence achieving 

a compatible blend of these materials pose a challenge [47]. Moreover, when TCP is dissolved in 

solvents for processing, rheological properties limit it’s loading, with the aggregation and 

delamination occurring at high loading percentages [48]. This study validated the potential of 

cryomilling to overcome such limitations associated with the fabrication of biocomposites. 

 XRD was used to confirm the occurrence of a homogeneous composite powder blend. DSC 

was utilized for the thermal characterization of biocomposites prepared by cryomilling. The 

cytotoxicity of the biocomposites was evaluated using RAW 264.7 murine macrophages. The cell 

viability was investigated using CTB® cell viability assay at the end of 24 and 48 h from the time 

of cell seeding. The cell morphology was qualitatively evaluated using BF microscopy. The 

powder composites were then spun into nanoscale fibers using electrospinning. SEM was used to 

observe the morphology of the fibers generated. CTB® cell viability assay was used to evaluate 

the proliferation of MG63 cells on electrospun membranes quantitatively. A live/dead viability 

assay was conducted, and the fibers were qualitatively analyzed using CARS and fluorescence 

microscopy. Also, a 21-day In vitro degradation study was performed on the electrospun 

membranes and analyzed using Raman spectroscopy. All data are expressed as mean values along 

with minimum and maximum values. Statistical analysis was carried out using Tukey’s post hoc 

test of two-way Analysis of Variance (ANOVA) with PRISM ver. 7.0 software. Values of p<0.05 

were taken to indicate statistical significance.  
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In conclusion, the goal of this research study is to fabricate fibrous membranes made out of 

cryomilled PLA/CS/TCP biocomposites that will stimulate the regeneration of the alveolar bone 

tissue. 

 

THESIS ORGANIZATION 

In this thesis, Chapter 1 presents the general introduction and information of this study. 

Chapter 2 provides the motivation behind this research by presenting significant background 

information on certain key topics. Chapter 3 intends to provide a brief summary of various 

observations that were made during the pilot studies, and it also presents the logical reasoning for 

the modifications made in the experimental design. Chapter 4 illustrates the detailed experiment 

design and implementation, together with results and conclusions about the suitability of the 

generated biocomposites for GBR. Chapter 5 provides general findings and future research 

directions. Appendix A describes briefly the statistical analyses that were performed to analyze 

the data obtained from in vitro studies. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

This section intends to discuss the motivation behind this research by providing significant 

background information on certain key topics related to this study. The rationale behind the design 

and development of this research study has been provided along with inferences from important 

research works published on the subject of interest.  

This section is divided into six parts: 1) Periodontitis, 2) Guided Bone Regeneration,  

3) Materials for barrier membranes, 4) Fabrication of polymer blends, 5) Production of polymeric 

nanofibers, 6) Summary of literature 

 

2.1. Periodontitis 
2.1.1. Periodontitis 

Periodontitis is a dental disease that is characterized by the destruction of connective tissue 

and dental bone support due to an inflammatory response to the infection caused by bacteria  

(Fig. 1) [5, 6]. Periodontitis is a degenerative disease that starts 

off with a reversible condition known as gingivitis which is 

characterized by the inflammation of the gums. The continuous 

build-up of plaque and tartar is responsible for the formation of 

pockets between the gums and the teeth. These pockets act as 

breeding grounds for bacteria and cause the inflammation of the 

gums. When left untreated, gingivitis can progress to an 

advanced stage and cause periodontitis. Periodontitis, unlike 
Fig. 1. Progression of periodontitis1  
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gingivitis, is an irreversible condition that leads to the destruction of periodontal tissues and, 

eventually, tooth loss [11].  

 

2.1.2. Prevalence of Periodontitis 

Currently, 5-20% of the adult population worldwide suffer from severe periodontitis which 

can ultimately result in tooth loss [49-51]. Based on the data from the 2009 and 2010 National 

Health and Nutrition Examination Survey (NHANES), Eke et al. (2012) reported that 64.7 million 

adults in the United States (U.S.) suffer from periodontitis with varying levels of severity [1]. It 

has also been understood that children and adolescents can also suffer from different forms of 

periodontitis ranging from aggressive to chronic periodontitis [52-54]. Moreover, the data from 

National Institute of Dental and Craniofacial Research (NIDCR, National Institutes of Health, 

U.S.) suggests that about 90% of adult populations more than 70 years old suffer from at least a 

moderate level of periodontal disease [2-4]. The high-level prevalence of periodontitis can be 

attributed to its association with several systemic disorders.  

 

2.1.3. Risk Factors 

Over the years, researchers have conducted numerous studies to understand the different 

factors that can influence the possibility of periodontitis. These risks have been broadly classified 

into two distinct categories namely modifiable and non-modifiable risk factors. The presence and 

accumulation of bacterial species have been identified as the major modifiable risk having a 

significant influence in increasing the risk of periodontitis. Bacteroides forsythus, Prevotella 

intermedia, Peptostreptococcus micros and Fusobacterium nucleatum have been strongly linked 
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to the progression of periodontitis in adults [55-58]. The other modifiable risks include smoking, 

diabetes mellitus, cardiovascular disease, stress, and obesity [59-69]. Osteoporosis, female 

hormonal alterations, pregnancy, host response, and age have all been identified as  

non-modifiable risk factors that have a significant correlation with periodontitis [70-73]. 

 

2.1.4. Mechanism of Bone Resorption: Understanding Periodontitis 

Periodontitis affects the structural integrity of the periodontal tissues. The periodontium 

consists of the root cementum, alveolar bone, periodontal ligament and the dentogingivial junction 

(Fig. 2). Each of these components have individual and distinct 

roles to play to maintain the overall function of the periodontium. 

A person suffering from a periodontal disease will experience a 

progressive destruction of the periodontium. Researchers have 

also been always working on decoding the mechanism of bone 

resorption in periodontitis to design effective treatment 

techniques. It has now been widely accepted that the loss of 

alveolar bone is a natural consequence of the progression of 

periodontitis. The loss of the alveolar bone results in the formation of a pocket around the tooth 

which then acts as a reservoir supporting the growth of anaerobic bacteria which in turn leads to 

tooth loss [74]. After studying the mechanism of bone resorption, Heinz et al. (2015) concluded 

that “The Th1-type T lymphocytes, B cell macrophages, and neutrophils promote bone loss 

through upregulated production of proinflammatory mediators and activation of RANK-L 

expression pathways” [75]. This response disturbs the delicate balance between protective and 

destructive functions of the immune system [76-81].  

Fig. 2. Cross-sectional image of the periodontium2  
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2.1.5. Treatment Options 

Periodontists use a wide variety of techniques to treat patients suffering from gingival recession 

and periodontitis depending on the severity of the condition. Some of the common methods used 

are laser treatment, gum graft surgery, non-surgical treatments, dental crown lengthening, pocket 

reduction procedures and placement of dental implants. Recently, engineers and periodontists have 

been particularly interested in regenerative processes that make use of barrier membranes to restore 

the functionality and structural integrity of a diseased periodontium. At this point, it is imperative 

to understand that regenerative procedures do not act as a treatment for periodontitis. Rather, it is 

an engineered approach for regenerating defects that have been caused by periodontitis. Therefore, 

appropriate periodontal treatment needs to be administered before regeneration is initiated [82].  

In the recent years, the developments in the field of regenerative medicine have made engineers 

and clinicians believe that these procedures could be used to exploit the inherent regenerative 

capabilities of the human body. It is believed that regeneration techniques could solve the problem 

of shortage of bone grafts and challenges associated with graft rejection [12, 13, 83]. Therefore, in 

this particular study, the focus will be on regenerative surgical modalities that have been used to 

regenerate diseased tissues. 

 

2.2. Guided Bone Regeneration 
2.2.1. Bone Augmentation 

Typically, patients with loss of teeth due to periodontitis need to undergo an implant 

therapy to fill an edentulous site. It is now widely accepted that the end goal of an implant therapy 

is to provide a completely functional implant that also caters to the aesthetic expectations of the 

person undergoing the treatment. However, a successful implant therapy demands an alveolar 
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ridge with appropriate dimensions to ensure success of the procedure. Researchers have concluded 

that tooth extraction can result in greater resorption leading to severe loss of alveolar width [84-

86]. It has also been shown that, without treatment, post tooth-removal, crestal bone resorption is 

unavoidable 87, 88]. Therefore, it is important to have an intermediate step for the regeneration of 

alveolar deficient sites prior to implant placement. This need has necessitated the development of 

materials and techniques that can provide predictable and reliable results [89]. Researchers have 

developed and tested different treatment modalities such as ridge augmentation before implant 

placement, immediate implant placement in fresh extraction sockets, ridge augmentation with 

implant placement and ridge augmentation in combination with implant placement [90-99].  

 

2.2.2. Guided Bone Regeneration  

Guided Bone Regeneration treatment is based on the idea that alveolar and mandibular 

bone defects can be regenerated by using barrier membranes, which can mechanically isolate the 

defect site from non-osteogenic cells and selectively support the growth of osteogenic cell 

populations (Fig. 3) [14]. Approximately 60 years ago, the concept of secluding an anatomic site 

with the aim to promote healing was introduced, when cellulose acetate fibers were used to 

regenerate damaged nerves cells and tendons [100, 101]. Around the same time, in a different 

study, researchers reported enhanced wound healing of rib, 

femoral and radial bone defects by using barrier membranes 

[102, 103]. Later on, favorable results were reported by placing 

barrier membranes over jawbone defects in rabbits and cranial 

defects in rats [104, 105]. All these experimental studies 

reinforced the belief in the idea of GBR which was first Fig. 3. Application of a barrier membrane3 
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introduced in a work published by Dahlin et al. (1988) [10]. Over the years, researchers have built 

on the foundation laid by these initial studies and have successfully used the concepts of material 

chemistry to develop efficient membranes. Currently, GBR is one of the most promising treatments 

available for patients to regain sufficient bone volume at the implant site [14, 106-108]. The 

occlusive membranes used in this treatment method promote the growth of new bone tissue by 

acting as a scaffold [109]. Clinically, it has been claimed that the barrier membranes used for the 

treatment should support new bone formation and maturation for at least six weeks [110, 111]. 

Hence, it is important to design and fabricate occlusive membranes with optimal persistence and 

stability to guarantee the success of the procedure.  

 

2.2.3. Barrier Membranes 

For the GBR technique, irrespective of the use of bone graft material, the barrier membrane 

has been proven to play a vital role in the prevention of epithelial tissue migration into the defect 

site, and in consequently allowing sufficient time for bone, cementum and ligament regeneration 

[112, 113]. The occlusive membranes are broadly classified into resorbable and non-resorbable 

membranes based on their ability to degrade inside the human body. The non-resorbable 

membranes made out of expanded polytetrafluoroethylene (e-PTFE) have been extensively studied 

and are still considered the gold standard in the industry [114]. However, in the recent years, 

researchers have shown tremendous interest in fabricating resorbable membranes because it 

eliminates the need for a removal surgery which is required in the case of their non-resorbable 

counterparts [11, 115]. The use of resorbable membranes has made the procedure less traumatic 

for the patients undergoing the treatment. Moreover, it has been suggested that the stiff non-

resorbable membranes may result in soft dehiscence and subsequently progression of infection 
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[116]. However, as far as resorbable membranes are concerned, there are still challenges that need 

to be addressed such as rapid degradation of the membrane, lack of structural integrity and reduced 

osteoconductivity [117]. One of the significant challenges with the resorbable membrane has been 

to match its resorption time with the rate of tissue formation [118]. In conclusion, ideal barrier 

membranes for GBR need to exhibit: a) mechanical strength, b) biocompatibility, c) clinical 

manageability, d) osteoconductivity and preferably e) a degradation rate that matches the rate of 

bone tissue formation [11, 119-121]. Over the years, researchers have experimented with a wide 

variety of materials for the fabrication of GBR membranes. 

 

2.3. Materials for Barrier Membranes 

2.3.1. Materials for Non-resorbable Membranes 

The most regularly used materials to make non-resorbable membranes are expanded high-

density polytetrafluoroethylene (e-PTFE) and titanium reinforced high-density 

polytetrafluoroethylene (Ti-d-PTFE) [122]. PTFE based membranes have been studied extensively 

and are especially noted for their excellent space-making ability [123]. A favorable correlation 

between space protection and bone regeneration has also been established [124]. These 

biocompatible and inert membranes are known to maintain their structural integrity. Amongst the 

two membrane materials, the titanium reinforced material has been shown to exhibit superior 

mechanical strength. Moreover, the increased mechanical strength allows the membrane to handle 

better the compressive forces exerted by the surrounding soft tissue and hence improves the 

regenerative capacity of the membrane [125]. The biggest drawback with non-resorbable 

membranes is that a second surgery is required to remove the membranes which implicate not only 

new pain but also economic discomfort [117].  
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2.3.2. Natural Materials for Resorbable Membranes 

Biodegradable membranes are commonly made up of either natural or synthetic polymers. 

Amongst natural polymers, the commonly used ones are collagen and chitosan (CS). The other 

commonly used natural materials are gelatin and silk fibroin (SF). This section discusses each of 

these materials along with some of the important scientific observations that have been published. 

 

2.3.2.1. Collagen-based Membranes. Collagen is a major component of the Extra Cellular Matrix 

(ECM) and hence has repeatedly been used due to its biocompatibility and good cell affinity [126-

128]. Collagen membranes, majorly type I and type III, have favorable properties like fast 

vascularization, minimum immune response, good tissue integration, osteoblastic adhesion and a 

capability to promote wound healing [118, 129-134]. Despite having such favorable properties, 

the use of collagen-based membranes has been limited because of certain fundamental drawbacks. 

Firstly, Type-I collagen is considered to be expensive. Also, collagen-based membranes have 

demonstrated a poor space-making ability in humid conditions, inferior mechanical strength and 

they possess a degradation rate that is hard to control [135]. Additionally, it has also been suggested 

that these membranes have shown poor mechanical properties during their degradation [136]. It 

has been suggested that different cross-linking techniques can be used to improve the stability and 

biomechanical properties of collagen-based membranes [137-140]. Although techniques like 

cross-linking give certain incentives to use collagen for the fabrication of membranes, they 

introduce other problems such as prolonged integrity and reduced capability to cause angiogenesis 

[141-143]. Research also indicated that cross-linked membranes could cause adverse events and 

reduced bone regeneration in comparison to the non-crosslinked membranes [144]. Unlike 
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synthetic materials, collagen is derived from human or animal tissues. Hence, there is also an 

increased risk of infections.  

 

2.3.2.2. Chitosan-based Membranes. CS is another natural polymer that has shown great potential 

to be used in the fabrication of barrier membranes. CS is a polysaccharide obtained by the 

deacetylation of chitin and has many applications due to its biochemical properties like 

antimicrobial effects, biodegradability, biocompatibility, and non-toxicity [145, 146]. CS is 

derived from shells of crustaceans, a natural resource and hence exhibits minimal foreign body 

response unlike polymers derived from mammalian proteins [147, 148]. It has been suggested that 

modified CS scaffolds demonstrate osteoconductivity in surgically created bone defects [149]. The 

antimicrobial and wound healing properties of CS has been attributed to its cationic nature [150]. 

Shin at al. (2005) suggested that the CS membranes were compatible with cells in in-vitro 

environments and also documented its role in bone regeneration [33]. Moreover, it has been proven 

that CS plays a supporting role in cell proliferation and osteoblast differentiation making it an 

attractive scaffold material for bone regeneration [43-45, 151]. However, the drawback of CS is 

its inferior mechanical properties which limit its use in load-bearing applications [152]. Over the 

years, researchers have found ways to work around this limitation. CS’s attractive biomedical 

properties can be exploited by blending it with other synthetic polymers and ceramic materials to 

enhance its bioactivity and mechanical properties [153]. CS has been cross-linked with genipin to 

improve its immunogenicity and reduced mechanical properties. Researchers have reported faster 

healing time, superior mechanical properties and earlier infiltration timings with the use of such 

cross-linked CS membranes [154-156]. One of the significant contributing factors for the shift in 

attention towards CS is its low cost due to its large-scale availability in nature [157-160]. 



www.manaraa.com

14 
 

 

2.3.2.3. Gelatin-based Membranes. Gelatin is a soluble protein that is derived from partially 

denatured collagen. Just like chitosan, factors like availability and cost efficiency have encouraged 

researchers to use gelatin as a scaffold material [161]. Gelatin has been used in both guided tissue 

regeneration (GTR) and GBR applications owing to its attractive properties such as good cell 

adhesion, low immunogenicity, and biocompatibility [162]. However, fast degradation and poor 

mechanical properties have also been reported about gelatin. To combat these limitations, cross-

linking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), cross-linking with N-

hydroxyl succinimide (NHS), glutaraldehyde treatment (GTA) and heat treatment has been used 

in the past [163-165]. It has been reported by Zhang et al. (2011) that the enhancement in elastic 

properties of gelatin is usually accompanied by a low Young’s modulus hence limiting the use of 

gelatin in GBR and GTR membranes [163]. 

 

2.3.2.4. Silk Fibroin-based Membranes. SF is a natural protein that is extracted from silkworms or 

spiders, and it possesses properties that are expected of a scaffold material used in regenerative 

applications [166]. Some of its advantageous properties include excellent biocompatibility, oxygen 

permeability and biodegradability [167]. Kim et al. (2005) reported a complete union in calvarial 

defects of rabbits treated with SF based membranes. It was also said that SF provides incredible 

strength that improves the space-making ability of the scaffold [168]. In another independent 

study, the tensile strength of SF-based membranes was shown to be better than cross-linked 

collagen and PTFE membranes [169]. Even though there is considerable evidence that SF could 

be a potential candidate for the fabrication GBR scaffolds, it is slightly more expensive in 

comparison to CS. Moreover, SF demands a tedious preliminary processing before its use in 

biocomposite fabrication, unlike CS. 



www.manaraa.com

15 
 

 

2.3.3. Synthetic Materials for Resorbable Membranes 

In an attempt to overcome the inherent shortcomings of natural polymers, researchers have 

been working on using synthetic polymers in scaffold fabrication for regenerative medicine and 

drug delivery applications [98, 170-177]. The most commonly used synthetic polymers include 

polycaprolactone (PCL), poly (lactic acid) (PLA), poly (glycolic acid) (PGA) and poly (lactic-co-

glycolic acid) (PLGA) [178-181]. Favorable properties like biocompatibility, biodegradability, 

clinical flexibility and commercial availability explain the increased usage of polyester-based 

membranes in tissue engineering applications [111, 135, 182].  

 

2.3.3.1. PLA-based Membranes. PLA has been widely used for the fabrication of sutures, drug 

delivery systems, and scaffolds for tissue engineering [183, 184]. It has been suggested that PLA 

has been of great interest to biomedical and tissue engineers because of its hydrolysable ester bonds 

[185]. However, poly (L-lactic acid) (PLLA) has a degradation rate that is not favorable for the 

use in GBR. It takes about four years to degrade while the ideal membranes should be completely 

resorbed in under one year [186, 187]. To overcome this difficulty, researchers have often used 

copolymers of lactide and e-caprolactone, glycolide and other polymers to reduce the time taken 

for complete resorption. Vivosorb®, a commercially available membrane consisting of poly (D, L-

lactide-e-caprolactone) was reported to be suitable for the purpose of regeneration with favorable 

properties like biocompatibility and non-cytotoxicity. Vivosorb® takes approximately 16 months 

to be completely resorbed [188]. Epi-Guide® is another resorbable, commercially available 

membrane consisting of poly (D, L-lactic acid) (PDLLA) with a unique three-layer technology 

that is known for its space-maintenance ability. Epi-Guide® maintains its structure and functions 
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for five months after implantation with a complete resorption in just over a year [189, 190]. Poly 

(lactic-co-glycolic-acid) has also been studied extensively in the past few decades [191].  

 

2.3.3.2. PLGA-based Membranes. PLGA is similar to PLA regarding degradation mechanism 

where the hydrostatically unstable bonds hydrolyze into lactic acid and glycolic acid [192]. 

Resolut® is a commercially available product consisting of two layers where one layer prevents 

the growth of epithelial tissue while the other layer promotes the integration of tissues. Histological 

studies have shown that this product is as effective as non-resorbable membranes with regards to 

performance but with the additional benefit of being resorbable [193, 194]. Recently, Hua et al. 

(2014) have shown that PLGA based membranes can assist the formation of new bone trabeculae 

in beagle dogs [38]. The stiffness of PLGA membranes was a major problem until it was resolved 

with the addition of softeners like N-methyl-2-pyrrolidone (NMP). Some of the studies indicate 

that the addition of softeners could also accelerate the maturation of preosteoblastic cells and bone 

regeneration [195, 196]. The addition of lauric acid has also been suggested to improve the 

mechanical properties of pure PLGA membranes [197]. 

 

2.3.3.3 PCL-based Membranes. PCL has been an attractive option for tissue engineers trying to 

design scaffolds because of its low cost, high mechanical strength and excellent biocompatibility 

[198-200]. However, due to its slow resorption rate, its use in GBR membranes has been limited 

[18, 201, 203]. The benefit of using PCL lies in the fact that it does not produce an acidic 

environment during degradation. In spite of having decent properties, PCL is mostly blended or 

co-polymerized with other polymers before its use in scaffold fabrication. 
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2.3.4. Ceramic Additives 

The primary goal of GBR is to use scaffolds to permit and promote the growth of the ECM 

and eventually support ossification. The presence of phosphate and calcium within the local 

environment is necessary to achieve this goal [203]. Ceramics such as calcium phosphate 

(biphasic) (CaP), TCP and hydroxyapatite (HA) have been widely employed in the scaffold 

fabrication process to make the scaffold resemble the mineral components of the human bone 

[109]. Other ceramics used for bone regeneration include bioactive glass, glass-ceramic, titanium 

and silica [153, 204-207]. The increasing use of bone substitute materials can be attributed to the 

inherent drawbacks of the autografting procedure such as donor site morbidity and limited 

availability of donor sites [208]. The different forms of calcium phosphates are used based on the 

crystal structure and dissolution rate required for that particular application [209]. Calcium 

phosphates have been shown to enhance osteoblast response thus improving the overall biological 

response to the fabricated scaffolds [210-212]. Researchers have successfully used different 

fabrication techniques such as electrospinning and electrospraying to add various forms of calcium 

phosphates to the scaffold to increase its bioactivity, adhesive and proliferative capabilities [37, 

127, 213-218]. TCP has also been proven to be an ideal synthetic bone substitute material to induce 

the regeneration of bone tissue [219-221]. Koyama et al. (2004) showed that TCP increased bone 

regeneration 12 weeks after surgery [126]. Copolymerized PLA (CPLA) and TCP were prepared, 

and they were reported to have good biocompatibility with excellent mechanical properties [42]. 

Moreover, it provides calcium ions to the bone tissue to create a suitable ionic environment that 

will encourage bone formation [46, 222].  Jansen et al. (1995) fabricated HA-based composites 

and reported its excellent biocompatibility [223]. Even though the addition of ceramic additives 

has yielded scaffolds with better proliferative capabilities, ceramic addition has always been 
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limited to minuscule amounts due to processing and mechanical strength considerations [224, 

225]. 

 

2.3.5. Membranes based on Polymer Blends  

As GBR membranes require a broad variety of properties to succeed in regenerating the 

alveolar bone, it is almost impossible for a single material to be successful. For example, natural 

polymers almost always lack mechanical strength while synthetic polymers are not capable of 

inducing biological activity. It may be an efficient solution to blend different materials to hinder 

their drawbacks and showcase positive synergistic effects [18]. To combat the weak mechanical 

properties of PLGA, it was mixed with PCL in the same ratio, and their compressive strength and 

modulus were found out to be much higher than pure PLGA scaffolds [201]. It has also been 

suggested that PDDLA/PLGA composite scaffolds could serve as a barrier for tissue regeneration 

[202]. Besides the composites mentioned in this section, other synthetic blends may also have a 

bright future in GBR procedures [226, 227]. As far as natural polymers are concerned, a significant 

amount of research has been done to blend CS with other polymers to improve its mechanical and 

physical properties. For example, it was reported that the cell adhesion and proliferation of 

chitosan could be increased by blending it with gelatin [228]. Another study observed the effects 

of adding HA to the gelatin/CS membrane and reported that the membrane possessed sufficient 

mechanical and structural properties to be suitable for GBR [229]. On the other hand, natural 

polymers have also been blended with synthetic polymers to improve the properties of the 

synthetic polymers when used for GBR [230-234]. For example, PLLA/CS membranes have 

shown much better degradation characteristics and non-fibroblast penetration properties when 

compared to pure PLLA membranes [235]. Another study indicated that the incorporation of CS 
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into PCL-PEG membranes improved the collagen orientation of the regenerated periodontium 

[236]. Antibacterial agents and growth factors have been the other exciting additions to polymers 

[237]. 

Over the years, different techniques have used to blend materials together in order fabricate 

polymer blends and composite materials. However, the blending technique needs to be evaluated 

and chosen based on certain considerations such as materials to be blended, final application of 

the blend, processing time, economic feasibility, and, most importantly the efficiency of the 

process. 

 

2.4. Fabrication of Polymer Blends 

As mentioned in the previous sections, polymer-bioceramic composite scaffolds represent 

a convenient alternative for applications in hard tissue regeneration due to the possibility to tailor 

their various properties such as mechanical, structural behavior, degradation kinetics and 

bioactivity [238]. However, the inherent immiscibility of polymers and composites pose a 

challenge to the success of the material in bone tissue engineering (BTE) as the rheology of the 

dispersed phase might play a critical role in determining the manufacturability of scaffolds [239]. 

This section intends to discuss some of the compatibilization techniques commonly used in 

polymer processing. 
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2.4.1. Melt Mixing with Block Copolymers 

Block polymers have repeatedly been used for the 

compatibilization of immiscible polymer blends, and their 

success has been well documented [240-242]. It has been 

shown that block polymers are thermodynamically 

favored to bridge the interface of immiscible polymer 

blends (Fig. 4). A few other kinds of polymers such as 

alternating, graft and gradient copolymers have also been used for similar applications. However, 

their usage remains limited as result of reduced commercial availability [243, 244]. Block 

copolymers have been observed to compatabilize immiscible blends by increasing the steric 

hindrance of domain motion and decreasing surface tension at the interface [245]. It has also been 

shown that larger copolymers exhibit improved compatibilization properties due to increased 

entanglement in both domains [246]. In general, it is believed that 5% of the dispersed phase 

interface must be saturated with block copolymer to prevent dynamic coalescence, while 20% 

would impart static stability [247]. Even though the success of this technique has been well 

documented, there have been issues that have repeatedly been reported about block copolymer 

compatibilization. One problem that has been reported in the literature is the self-assembling 

behavior of copolymers into micelles within the matrix phase [247]. Additionally, it has been 

reported that these micellar structures act as a contaminant and ultimately reduce the degree of 

compatibilization [248]. Another problem has been the necessary compromise that has to be made 

between using larger, efficient copolymers and diffusion problems associated with larger 

molecules. These issues are overcome by generating block copolymers within materials during 

processing at the blend interface [246]. However, this technique also has limitations such as 

Fig. 4. Use of block copolymers in stabilizing the interface4  
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increased operating costs and slow reaction kinetics [249]. Moreover, this method is usually 

employed during melt mixing which uses high temperatures which could result in the denaturing 

of bioactive molecules [250].  

 

2.4.2. Common Solvent Method 

In this technique, two incompatible polymers are dissolved in a common solvent, either 

under ambient or elevated pressures and temperatures. After complete dissolution, the solvent is 

removed by freeze drying or sublimation [251]. Unfortunately, this technique has several 

limitations and challenges, especially in the tissue engineering application. Homogeneous 

blending is a primary challenge during high loadings of filler materials [252]. The common solvent 

needs to be identified diligently as the incomplete dissolution of the polymers can reduce the 

efficiency of the process [253]. The use of toxic solvents has been shown to affect the 

biocompatibility of the materials involved [239]. The limitations mentioned above necessitate the 

development and use of low-temperature, solid-state techniques for the processing of 

biocomposites. 

 

2.4.3. Cryomilling 

Cryomilling is a novel technique for alloying, but its advantages as a biomaterial 

fabrication method have yet to be leveraged on in the area of biocomposite fabrication [250]. It is 

the mechanical attrition of particles under a cryogenic environment. In material processing, it has 

often been used as a technique to strengthen the materials through grain refinement and dispersion 

of fine, nanoscale particles, mostly employed in the creation of dispersed metallic phases [254, 
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255]. Zhu et al. (2006) prepared polyaniline/iron composites using cryomilling [253]. Hou et al. 

(2012) have reported the fabrication and characterization of metal/ceramic powders [256]. 

However, in the recent years, researchers have used cryomilling to blend immiscible materials and 

generate mixtures which otherwise would have been difficult to produce [48]. As mentioned in the 

previous sections, there is a need to combine synthetic polymers with other materials like natural 

polymers and bioactive ceramics to elicit desirable biological responses from the human body. 

However, the blending of these materials is mostly achieved by dispersing the bioactive 

ingredients as the second phase in polymers solutions or melts [238, 239, 257, 258]. Some of the 

drawbacks to these traditional techniques include the phase separation of additives during blending 

which ultimately results in an inefficient blend. Also, it has been suggested by Coroller et al. (2013) 

that the homogeneity of dispersion is crucial to attaining superior mechanical performances from 

composite materials [259]. Polymer powder processing has previously been used for fabrication 

of pharmaceutical coatings and scaffolds for tissue engineering [260, 261]. Cryomilling has been 

used to create homogeneous blends of polymeric materials for the preparation of tissue engineering 

scaffolds [252]. Another study has shown that cryomilling can be utilized for the fabrication of 

biodegradable PCL/PGA scaffolds [262]. Apart from assisting with the manufacture of 

homogeneous blends, cryomilling also offers other benefits that cannot be expected of other 

traditional processing techniques. Cryomilling provides the benefit of producing a finer grain 

structure in relatively shorter processing times [263]. Researchers have found that particles with 

high surface area to volume ratio provides a larger area for biological activity [264]. Recently, Lim 

et al. (2014) fabricated PCL/TCP composite powders by cryomilling for tissue engineering and 

reported that cryomilling was able to achieve homogeneous dispersion even at higher loading 

percentages of ceramic particles [48]. Moreover, cryomilling requires lesser energy to induce a 
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material fracture when compared to other milling techniques as the whole process takes place 

below the glass-transition temperatures of the polymers used. In addition to all the advantages that 

have been previously mentioned, cryomilling is one method that can be used to overcome the creep 

behavior faced by polymeric scaffolds. By incorporating nanomaterials, it has been postulated to 

extend the viscoelastic response, resulting in high resistance to time-dependent strain results. 

Hence, it has been considered that the future of polymer biocomposites for utility in scaffold-based 

BTE lies in achieving homogeneous blends with exceptional mechanical properties [239]. 

 

2.5. Production of Polymeric Nanofibers 

Tissue engineers have made extensive use of polymeric nanofibers for the purpose of tissue 

regeneration. The popularity of nanofibers can be understood by taking a look at the number of 

reviews focusing on their production, application, and interaction with biological cells [265-269]. 

The unique properties of polymeric membranes have made them an indispensable tool in the 

armory of a tissue engineer. The small diameter of these fibers closely matches the size and 

morphology of the ECM fibers. In general, electrospun fibers are used as biomimetic scaffolds, 

and their high surface area to volume ratio have only added to their advantages in the field of drug 

loading and regenerative medicine [270-272]. These unique properties have been extremely useful 

in modulating cell behavior [273]. Three production techniques are commonly employed for the 

fabrication of nanofibers in the field of tissue engineering. This section will briefly review the 

literature on electrospinning, phase separation and self-assembly. 
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2.5.1. Phase Separation 

The phase separation method works by inducing the phase separation of a polymer solution 

into a polymer-rich and a poor polymer phase. It has been widely used for the fabrication of porous 

scaffolds for tissue engineering applications [274, 275]. In recent years, aliphatic polyesters have 

been used in this technique. Briefly, a polymer such as PLLA is dissolved in a suitable solvent and 

rapidly cooled to induce phase separation. Afterward, the solvent is exchanged with water, and the 

construct is subjected to freeze drying. Some of the variations in the process include altering the 

gelling temperature and changing the polymer concentration [276, 277]. Apart from aliphatic 

polyesters like PLLA and PLGA, this technique has also been extended to polyhydroxyalkanoate, 

CS, gelatin and also gelatin/apatite composites [278]. However, this process has still been limited 

to just a few polymers and also the difficulty of scaling up has restricted the usage of this technique 

[265, 277]. 

 

2.5.2. Self-assembly 

 Self-assembly is a bottom-up approach to nanofiber production that relies on weak 

noncovalent interactions to build nanofibers from smaller molecules [271]. The building blocks 

are either naturally occurring or designed specifically for the occasion [279].   

Peptide-amphiphiles (PAs) are one of the commonly used building blocks and have been in 

existence for over a decade now [280]. The chemical structure of PAs permits the initiation of an 

assembly with just an adjustment in the ion content of the PA solution [281]. While this approach 

can generate nanofibers of the smallest scale, the processing procedure is still challenging and is 

limited to a small set of polymers. Also, this process can only create short fibers that are only a 

few microns long [264]. 
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2.5.3. Electrospinning 

 Electrospinning is a cost-effective technique that exploits the principles of electrostatic 

forces to generate fibers that have diameters either in microns or the nano-scale. In a typical 

process, a polymer solution is extruded out of a syringe and aimed at a collector plate. A potential 

difference is applied between the needle and the collector plate which helps the polymer droplet 

overcome the surface tension and take the form of fibers with the solvent evaporating before it 

reaches the collector plate. Some of the factors that are commonly varied to produce fibers with 

the right diameter are polymer concentration, needle tip to collector plate difference, applied 

potential difference, the geometry of the collector plate and polymer flow rate [265, 267, 282-285]. 

A variety of polymers has been used for electrospinning. Some of the synthetic polymers include 

PCL, PLLA, polyurethane, copolymers of PEG and PCL [286- 290]. Additionally, composite 

fibers have also been produced with natural, synthetic polymers and bioceramic constituents [224, 

291]. Researchers have used electrospinning previously for the fabrication of scaffolds for bone 

tissue engineering (BTE). For example, PLA/HA composite membranes were fabricated, and 

osteoblast cell adhesion was evaluated to be much better than that of pure PLA [292, 293]. To 

combat the problem of inefficient dispersion of ceramic particles, Kim et al. (2006) investigated 

the influence of a surfactant [294]. Mei et al. (2007) fabricated membranes for guided tissue 

regeneration (GTR) using PLA, Multiwalled Carbon Nanotubes (MWNTs) and HA and reported 

enhanced adhesion and mechanical strength [295]. Schneider et al. (2008) fabricated PLGA/TCP 

nanocomposite fibers and concluded that the membranes have a bright future in the regeneration 

of bone defects [296]. Recently, a layer by layer approach was used to fabricate PCL/CaCO3 

membranes [117]. Authors have also reported the difficulty experienced during the electrospinning 

of pure natural polymers and have often overcome this problem by adding synthetic polymers for 
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easier processing [297]. Yang et al. (2008) fabricated CS/polyvinyl alcohol (PVA) with HA 

biocomposite nano-scaffolds using electrospinning and concluded that the increase in HA content 

above 5% decreased the ultimate tensile strength and strain in failure. The scaffold’s capability to 

enhance cell adhesion was also reported [298]. Zhang et al. (2008) fabricated HA/CS nanofibers 

and highlighted the great potential of using these fibers for BTE applications [299]. Badami et al. 

(2006) made PDLLA, PLLA, PEG-PDLLA and PEG-PLLA nanofibers to evaluate the influence 

of surface topography on the cell morphology and cell proliferation [300]. Hu et al. (2013) 

concluded that electrospinning with dip coating is a possible technology for producing membranes 

for GBR and GTR [301].  

 

2.6. Summary of Literature 

 This literature review section is aimed to provide readers with a summary of the work 

done in the field of BTE focusing mainly on the regeneration of bone tissues. Key takeaways from 

the literature review can be summarized as follows (1) The design and fabrication of barrier 

membranes is crucial role in the success for GBR; (2) Composite materials have the potential to 

be the best option for barrier membranes; (3) Homogeneous dispersion of bioceramic particles is 

a key factor in electrospinning; (4) Cryomilling can be a cheaper and efficient alternative to 

traditional blending techniques. 
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CHAPTER III 

PRELIMINARY WORK 

Before the investigation of the primary hypothesis, pilot studies were conducted to 

understand the processing of polymer-ceramic composites. Two different processing techniques, 

electrospinning, and compression molding were initially pursued for the fabrication of GBR 

membranes. However, in the end, observations from the pilot studies, inferences from literature, 

and preliminary results from the In vitro studies had a significant influence on the way the 

experiments were finally designed. This section provides a brief summary of the various 

observations that were made during the pilot studies, and it also presents the logical reasoning for 

the modifications made in the experimental design. 

 

3.1. Design and Fabrication of Biocomposites 

3.1.1. Initial Composite Design 

A detailed literature review clearly revealed that the ideal material for the manufacture of 

barrier membranes had to be a blend of different materials [18]. In other words, the choice to 

generate composites for scaffolds was straight-forward. However, the constituents of the 

composites had to be chosen with care. To regenerate the alveolar bone which is an organic-

inorganic composite, it would be ideal for the scaffold to be made of both these components. PLA 

was chosen to be the first polymer representative based on its previous success in regenerative 

applications [183, 184]. CS was an obvious choice to be the natural polymer-agent because of its 

superiority to collagen. Some of the beneficial properties that CS offers include improved 

biocompatibility, enhanced cell adhesion, the ability to support osteoblast proliferation, minimal 
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immune response, low cost and also antimicrobial properties [43-45, 145, 146, 150, 151]. As 

mentioned in section 2.3.4, the addition of bioactive ceramics has shown to improve the 

regenerative capability of barrier membranes. The usage of TCP in the fabrication of membranes 

for GBR is well-documented and has been met with considerable success [219-221]. So, TCP was 

chosen to be the bioceramic in the blend. Table 1 shows the different combinations in which the 

materials were generated in the pilot study. The intention behind the design of composites was to 

evaluate various combinations to identify suitable blends for scaffold fabrication. The 

combinations A0*, A1*, A2* and A3* were designed to understand the interaction between PLA 

and TCP without CS. The samples B0* through C3* were designed to study the interaction of all 

the three materials. Samples B0*-B3* had a relatively higher percentage of PLA in the polymer 

matrix while samples C0*-C3* had a greater percentage of CS. Finally, the samples D0*-D3* were 

designed to understand the interaction of CS and TCP in the absence of the binder material, PLA. 

In this study, anything more than 20% of TCP in the polymer matrix was considered to be high as 

previous studies have reported agglomeration of TCP particles at such percentages [48].  

 Later, electrospinning and compression molding were used to fabricate scaffolds with the 

biocomposites prepared by cryomilling.  

               Table 1. Material compositions used for the pilot study 

Sample PLA/CS (Polymer Matrix) TCP/Matrix 

A0* 100/0 0/100 

A1* 100/0 10/90 

A2* 100/0 20/80 

A3* 100/0 30/70 

B0* 70/30 0/100 

B1* 70/30 10/90 
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      Table 1 continued 

Sample PLA/CS (Polymer Matrix) TCP/Matrix 

B2* 70/30 20/80 

B3* 70/30 30/70 

C0* 30/70 0/100 

C1* 30/70 10/90 

C2* 30/70 20/80 

C3* 30/70 30/70 

D0* 0/100 0/100 

D1* 0/100 10/90 

D2* 0/100 20/80 

D3* 0/100 30/70 

 

3.1.2. Cryomilling 

Once the material compositions were finalized, the literature was reviewed to identify the 

ideal blending technique for the fabrication of biocomposites. The literature review revealed the 

advantages of cryomilling in biocomposite fabrication [239]. Some of the benefits of using 

cryomilling include use of reduced energy, homogeneous dispersion even at higher loading 

percentages of ceramic particles and the added benefit of being a solventless process [48]. Also, 

researchers from Interdisciplinary Manufacturing Engineering and Design Laboratory (iMED), 

Iowa State University (ISU), have tasted considerable success in fabricating polymer composites 

using cryomilling [250, 252, 253]. The second hurdle was to identify the process parameters to be 

employed in the cryomilling process. Based on observations made by Lim et al. (2013) and 

observations from trial experiments run at iMED, the total cryomilling time was chosen to be  
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20 mins [48]. The other process parameters such as precool time, cooling time, cycles per second 

(cps) and number of cycles were chosen based on the manufacturer’s prescription. 

 

3.2. Production of Membranes for Guided Bone Regeneration 

After the blending and fabrication of biocomposites by cryomilling, electrospinning and 

compression molding were explored for the production of GBR membranes. The inferences from 

the experiments involving these techniques are provided in the following sections. 

 

3.2.1. Electrospinning 

As nanofibrous scaffolds have had great success with GBR, electrospinning was an 

appropriate choice for the fabrication of membranes [292-296]. This study being the first to 

produce a three-material biocomposite powder blend for the fabrication of GBR membranes, only 

made it harder to identify the appropriate process parameters to ensure repeated fabrication of 

fibrous membranes. Moreover, the different material properties of the various constituents of the 

biocomposites was an added challenge. First attempts that were made to fabricate nanofibers used 

chloroform and dimethylformamide (DMF) (3:1 v/v) as the solvents to dissolve the composite 

blends based on the experiments reported by McCullen et al. for PLA/TCP composites [302]. 

Another solvent combination that was tried was dichloromethane (DCM) and DMF (7/3 v/v) [301]. 

However, both the solvent combinations mentioned above did not yield expected results with 

combinations that contained a high percentage of CS (C0*-D3*). This was attributed to CS’s ionic 

character in dissolved state and three-dimensional networks of strong hydrogen bonds [47]. Also, 
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the composites with TCP posed a challenge because of their rheological properties which caused 

aggregation at higher loading percentages (A3*, B3*, C3*, D3*). 

At the end of the pilot study, it was concluded that the high ceramic content in some cases 

and presence of CS in other cases were responsible for the failure of DCM, DMF, and chloroform 

in being the common solvent. It was also inferred that CS was insoluble at neutral and alkaline pH 

but was soluble in acidic media. Thus, trifluoroacetic acid (TFA) was chosen as the co-solvent for 

the purpose of electrospinning. 

 

3.2.2. Compression Molding 

Compression molding was used to fabricate bone tissue 

scaffolds using an entirely solvent-free approach [303]. Briefly, 

the aluminum mold was preheated to a temperature of 195℉, and 

a pressure of 5000 psi was applied for 15 mins once the 

composite material was placed inside. Fig. 5 is an image of the 

compression molded film that was fabricated using this 

protocol. However, the In vitro studies with MG63 cells did not yield expected reasons. Some of 

the scaffolds (A3*, B3*, C3*, D3*) crumbled when placed in the cell culture medium because of 

their relatively higher TCP content. Moreover, all the scaffolds lacked porosity and were not able 

to assist in guiding and promoting cell proliferation.  

At the end of the In vitro study, it was inferred that a porous and interconnected scaffold 

architecture along with reduced TCP content would create an environment that would facilitate 

proliferation and migration of the cells. 

 

Fig. 5. A3* compression molded scaffold  
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3.3. Modified Experimental Design 

3.3.1. Electrospinning 

The observations from work published by Tanase et al. (2014) were used to redesign the 

composites [185]. The biocomposites that were generated 

in this study are as follows:  A0: 100% PLA; A1: 70% 

PLA, 30%CS; A2: 68% PLA, 30%CS, 2% TCP; A3: 

66%PLA, 30%CS, 4%TCP. TFA was used as the co-

solvent for the purpose of electrospinning. In a 

typical process, 18-20 w/v% of the composite powder 

was added to 5 ml of TFA, and the solution was stirred using 

a magnetic stirrer at 25 ℃ for at least 24 h for better 

dispersion and homogenization of the ceramic particles. The 

solution was then transferred to a 5 ml syringe with an 18G 

needle. A stationary copper plate covered with aluminum foil 

was used as the collector plate. The needle tip to collector distance was set to 13 cm, and the 

potential difference was adjusted between 15-17.5 kV as needed with a constant solution flow rate 

of 0.05 ml min-1. Fig. 6 is a photograph of a barrier membrane that was prepared using 

electrospinning during this study. Fig. 7 is a micrograph of an electrospun membrane generated 

with A3. 

 

3.3.2. Compression Molding 

The compression molding fabrication protocol was designed based on previously published 

work on BTE scaffolds [185, 304]. Compression molding was used to fabricate scaffolds, which 

Fig. 6. Electrospun PLA/CS/TCP barrier membrane 

Fig. 7. Morphology of A3 membrane 
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were later immersed in water for porogen leaching. Firstly, the composite powder and sodium 

chloride (NaCl) particles were mixed using a magnetic stirrer. The 

mass ratio of sodium chloride to composite powder was chosen to 

be 1.6:1 (w/w). After 30 mins of mixing, the mixture was 

transferred into a stainless-steel mold with cylindrical cavities  

(d = 9 mm; h = 13 mm). The compression molding process was 

carried out using a hydraulic press. The mold was preheated to 

175℃, and the molding process was carried out with a pre-pressing step  

of 3 mins at 50 atm and a pressing step of 2 mins at 150 atm. The fabricated scaffolds were then 

porogen leached in distilled water for 24 h and dried in a programmable vacuum oven overnight. 

Fig. 8 shows a micrograph focused on the cross-section of the generated scaffolds. Fig. 9 indicates 

the dimensions and surface texture of the scaffolds that were generated. However, the In vitro 

studies once again revealed that the scaffolds underwent uncontrolled swelling in the culture 

medium and crumbled. So, the fabrication and the results of the 

compression molded scaffolds were omitted from the paper that has 

been submitted for peer-reviewed publication. Fig. 10 shows an 

image of the crumbled scaffolds in the culture medium. It was later 

hypothesized that the addition of a binder like polyethylene oxide 

(PEO) could improve the overall structural integrity of the scaffolds 

[305].   

 
 

Fig. 8. Porous scaffold architecture (A2) 

Fig. 9. A compression molded scaffold 
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Fig. 10. Crumbled scaffolds in culture medium 
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CHAPTER IV 

Fabrication and Evaluation of Poly (lactic acid)/Chitosan/Tricalcium Phosphate 

Biocomposites for Guided Bone Regeneration 

Manuscript to be submitted to Materials Science and Engineering C 

Srikanthan Ramesh1a, Lisa Lungaro2a, Dimitrios Tsikritsis2, Iris Rivero1*, Alistair Elfick2 

4.1. Abstract 

This study aims to validate the preparation approach of biodegradable polymer-bioactive 

ceramic composites, and evaluate their suitability for guided bone regeneration (GBR). GBR is a 

dental surgical procedure that uses barrier membranes to guide the growth of new bone tissues. 

Resorbable membranes eliminate the need for second surgeries that patients with non-resorbable 

membranes need. Cryomilling, a solid-state blending process, facilitates bulk fabrication by 

eliminating difficulties such as high viscosity, insolubility and long processing times. 
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It is a cost-effective technique to generate particles with high surface area to volume ratio, 

which provide a larger area for biological activity. X-Ray diffraction and differential scanning 

calorimetry were used to characterize the molecular structures and glass-transition temperatures 

of the powder composites prepared by cryomilling. Scanning electron microscopy was used to 

study the morphology of the membranes generated by electrospinning. In vitro studies were 

performed with MG63 cells to quantify the blend’s capability to encourage cell proliferation. 

Coherent anti-Stokes Raman spectroscopy and fluorescence microscopy were used to analyze cell 

proliferation qualitatively. A 21-day in vitro degradation study was performed on the electrospun 

membranes and analyzed using Raman spectroscopy. CellTiter-Blue® cell viability assay 

performed on cells grown on membranes revealed that cells are viable and metabolically active 

both at 3 and 7 days from cell seeding, indicating the suitability of the biocomposites for GBR. 

Key words: PLA/CS/TCP, Biocomposites, Guided Bone Regeneration, Cryomilling, 

Electrospinning 

4.2. Introduction 

In the recent years, the increasing interest in developing dental procedures for bone 

regeneration has been a consequence of the growing number of patients in need of such 

interventions. Based on the data from the 2009 and 2010 National Health and Nutrition 

Examination Survey (NHANES), Eke et al. reported that 64.7 million adults in the United States 

(U.S.) suffer from periodontitis with varying levels of severity [1]. Periodontitis is a dental disease 

that is characterized by the destruction of the connective tissue and dental bone support due to an 

inflammatory response to the infection caused by the presence and activity of bacteria [2, 3]. 

Guided Bone Regeneration (GBR), when used, has been able to treat various bone defects caused 

by periodontitis [4-6]. In principle, GBR uses barrier membranes to prevent the entry and 
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proliferation of non-osteogenic cells in the defect sites by selectively permitting the growth of 

osteogenic cells [7]. Therefore, the success of the procedure, amongst other factors, is also largely 

dependent on the design and performance of the barrier membrane. A suitable barrier membrane 

is expected to be biocompatible, mechanically stable and flexible during the time of implantation 

[8]. It has been suggested that a barrier membrane used in GBR should support the formation and 

maturation of the new bone for at least six weeks [9-10]. Expanded polytetrafluoroethylene (e-

PTFE) has by far been the most preferred material for the fabrication of non-resorbable membranes 

[11, 12]. However, it has been suggested that the use of stiff non-resorbable membranes may result 

in wound dehiscence exposing the operated site to infection [13]. Resorbable membranes have 

acted as alternatives by eliminating the need for removal surgeries [14]. Natural polymers such as 

chitosan (CS) [15-17], collagen [18] and synthetic polymers like poly (lactic acid) (PLA) [19-21], 

poly (𝜀𝜀-caprolactone) (PCL) [22-24], poly (lactic-co-glycolic acid) (PLGA) [25-27] have been 

used individually or in blends for the fabrication of barrier membranes. The addition of bioactive 

ceramics such as hydroxyapatite (HA) [28] and tricalcium phosphate (TCP) [29] has also been 

proven to improve the mechanical and biological properties of barrier membranes. Composite 

materials have allowed the fabrication of tailor-made barrier membranes that exhibit positive 

synergistic effects [30]. The compatibilization strategies for the fabrication of polymer blends and 

polymer-ceramic composites have traditionally involved the use of solvents and high temperatures 

[31]. Unfortunately, these techniques have several limitation such as: a) non-homogeneous mixing 

[32], b) denaturing of biomolecules [33], and c) increased operation costs due to slow reaction 

kinetics [34]. These drawbacks necessitate the development and use of safe, low-temperature, 

solid-state techniques for the processing of biocomposites. 
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This study intends to validate the fabrication approach of novel biodegradable polymer-

bioactive ceramic barrier membranes for use in GBR. A low-temperature, solid-state, blending 

technique called cryomilling was employed to generate polymer-ceramic biocomposites made of 

PLA, CS, and TCP. As mentioned previously, PLA-based membranes have produced considerable 

success when used for GBR. CS, apart from being resorbable and biocompatible, was also chosen 

for its antimicrobial properties [35]. Moreover, the role of CS in cell adhesion, proliferation, and 

osteoblast differentiation has been well documented [36-38]. TCP was used as a synthetic bone 

substitute material to induce the regeneration of bone tissue [39-41]. Even though these materials 

have been previously used in the fabrication of scaffolds for GBR, the potential of a biocomposite 

with these materials remains unexplored. 

In this study, electrospinning was employed to generate barrier membranes due to its 

previous success in bone tissue engineering (BTE) applications [42-44]. RAW 264.7 murine 

macrophages were used to evaluate the cytocompatibility of the generated biocomposites and 

investigated by CellTiter-Blue® (CTB®) cell viability assay. Further, the electrospun membranes 

were evaluated for their capability to support the growth of MG63 cells using CTB® cell viability 

assay. A live/dead viability assay was also conducted, and the fibers were qualitatively analyzed 

using coherent anti-Stokes Raman Spectroscopy (CARS) and fluorescence microscopy. Also, a 

21-day In vitro degradation studied was performed and analyzed using Raman spectroscopy. 

 

4.3. Materials and Methods 

4.3.1. Fabrication of PLA/CS/TCP Biocomposites 

PLA (Purasorb PL 10; Corbion Purac), CS (448877-50G, Medium Mw; Sigma-Aldrich), 

TCP (C5267-100G, 34.0-40.0% Ca basis; Sigma-Aldrich) were cryomilled to generate  
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polymer-ceramic powder composites. Compositions of the blends prepared are as follows: A0: 

100% PLA; A1: 70% PLA, 30% CS; A2: 68% PLA, 30% CS, 2% TCP; A3: 66% PLA, 30% CS, 

4% TCP. Briefly, exact quantities of each material were transferred into a polycarbonate vial with 

stainless-steel impactors and end plugs. The vial was then loaded into the freezer mill (6870; 

SPEX, Metuchen, NJ, USA) which was maintained at a temperature of -196 ℃ using liquid 

nitrogen. Each composition was cryomilled for 20 mins in 4 cycles. A cooling time of 1 min was 

allowed between successive cycles and a precool time of 4 mins was utilized to ensure 

homogeneity in temperature at the time of milling. A total sample weight of 5 g was used for every 

run. The samples were stored in a silica-filled desiccator for at least 48 h at room temperature 

before further processing. 

 

4.3.2. Fabrication of PLA/CS/TCP Biocomposite Membranes 

Electrospinning was employed to generate fibrous membranes using the generated 

biocomposites. Trifluoroacetic acid (TFA) (O4902-100; Fisher Scientific) was used as the 

common solvent. In a typical process, 18-20 w/v% of the cryomilled powder was added to 5 ml of 

TFA, and the solution was stirred using a magnetic stirrer at 25 ℃ for at least 24 h to ensure 

homogeneous dispersion of the bioceramic particles. The solution was then transferred to a 5 ml 

syringe with an 18G PrecisionGlide needle (Becton-Dickinson, Franklin Lakes, NJ, USA). A 

stationary copper plate covered with aluminum foil was used as the collector plate. The needle tip 

to collector distance was set to 13 cms, and the potential difference was adjusted between  

15-17.5 kV as needed with a constant solution flow rate of 0.05 ml min-1. All the electrospun 

membranes were kept at 40 ℃ in a vacuum oven for 24 h before the further investigation was 

performed. 
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4.3.3. Scanning Electron Microscopy 

The morphology of the samples was analyzed using a JEOL JCM-6000Plus NeoScope 

Benchtop scanning electron microscope (SEM) (JEOL, Peabody, MA, USA). Accelerating 

voltages of 10-15 kV were used depending on the requirement. The fiber diameter was measured 

using JCM-6000 software version 1.1. The mean diameters of the barrier membranes were 

calculated using thirty measurements from three independent samples. All diameter values have 

been reported as mean ± standard deviation (SD). 

 

4.3.4. X-Ray Diffraction Analysis 

X-Ray Diffraction (XRD) analysis was performed to confirm the occurrence of a 

homogenous composite blend. The biocomposites were analyzed using the Rigaku Miniflex 600 

XRD analysis unit (Tokyo, Japan). The voltage and current applied were 30 kV and 15 mA 

respectively. A scintillator counter (SC-70) was used as the detector. The scan ranged from 3 to 

80 degrees with steps of 0.02 degrees. PDXL (version 2.1.3.4.) was used to analyze the data. 

 

4.3.5. Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) (Phoenix, NETZSCH Instruments, Burlington, 

MA, USA) was used for thermal characterization of the generated biocomposite powders. In a 

typical measurement process, 8 mg of the sample was analyzed using aluminum pans and argon 

purge gas. An empty aluminum crucible was used as the reference. In order to avoid the 

degradation of CS, the method of Sakurai et al. was used with modifications [45]. Suyatma et al. 

have reported the success of this method for the thermal characterization of PLA/CS biodegradable 
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films [46]. The samples were quenched to at -10 K min-1 to -30 ℃ before being heated to 190 ℃ 

at the same rate. The samples were held at 190 ℃ for 1 min before being cooled down to -30 ℃. 

The samples were then held at -30 ℃ for 3 mins before the second heating cycle in which the 

samples were heated up to 250 ℃. The second heating scan was used to identify the glass transition 

and melting temperatures of the cryomilled blends. Proteus Thermal Analysis version 6.1.0 was 

used for the analysis. 

 

4.3.6. Powder Preparation for Cell Cytotoxicity Study 

Powders A0, A1, A2 and A3 were weighed on a precision scale and were suspended in a 

standard Dulbecco’s Modified Eagle’s Medium (DMEM) at a concentration of 0.84% w/v (0.05 g 

powder in 6 ml of standard medium), creating respectively StockA0, StockA1, StockA2, and 

StockA3 medium. Each stock medium was then transferred into a Pyrex bottle and autoclaved at 

121 ℃ for 15 mins. Stock media were cooled to room temperature, then each of them was diluted 

to a final concentration of 3 µl/ml, 10 µl/ml, 30 µl/ml and 50 µl/ml using the standard medium. 

The new solutions were named CompA0, CompA1, CompA2 and CompA3 medium. 

 

4.3.7. Cell Cytotoxicity Study using RAW 264.7 Murine Macrophages 

 RAW 264.7 murine macrophage cell line was used to test the cytocompatibility of 

CompA0, CompA1, CompA2 and CompA3 medium, in different concentration as explained in 

section 4.3.6. Cytotoxicity was tested by treating macrophages with powders suspensions in 

standard medium, as performed by Varmette et al. (2008) [47]. The cells, at passage 12, were 

cultivated in standard DMEM medium (Sigma-Aldrich, Irvine, UK) supplemented with 10% Fetal 
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Bovine Serum (FBS) (Invitrogen, Paisley, UK) and 1% penicillin/streptomycin  

(100U/ml/100 µg/ml, Invitrogen, Paisley, UK). When confluent, cells were trypsinized, counted 

and subsequently seeded into 96-well plate at the concentration of 3x104 cells/well in a volume of 

100 µl of the medium. Cells were then incubated for 24 hours at 37 °C, 5% CO2, and subsequently 

exposed to CompA0, CompA1, CompA2 and CompA3 and added to cell culture at final 

concentrations of 3 µl/ml, 10 µl/ml, 30 µl/ml and 50 µl/ml in 100 µl of medium/well. Cells were 

incubated for 24 h at 37 °C, 5% CO2 and at the end of the incubation time, cells were imaged using 

bright microscopy (BF). Then, CompA0, CompA1, CompA2 and CompA3 media were replaced 

with fresh, standard medium and cells were incubated for further 24 h and 48 h, before proceeding 

with the CTB® cell viability assay. 

 

4.3.8. CellTiter-Blue® Cell Viability Assay on RAW 264.7 Murine Macrophages 

Cell viability was investigated using CTB® cell viability assay (Promega, Southampton, 

UK) after 24 and 48 h from the end of the treatment with Comp A0, A1, A2 and A3 media. Briefly, 

20 µl/well of the reagent was added to cells grown in a 96-wells plate, according to the 

manufacturer's protocol. Then, cells were incubated in an incubator at 37 °C, 5% CO2 for 3 h. At 

the end of the incubation time, the supernatant of each well was transferred to a fresh 96 wells 

black plate, glass bottom, and fluorescence was measured with a microplate reader (Modulus™ II 

Microplate Multimode Reader, Turner Biosystems, Sunnyvale, California, USA) at 560/690 nm. 

Cells grown in the standard medium were used as controls and samples were investigated in 

triplicates. All data are expressed as mean values along with minimun and maximum values. At 

the end of the incubation time with CompA0, A1, A2 and A3 media, cell morphology was 

evaluated using BF microscopy (Leica Microsystem, Milton Keynes, UK), at 200x magnification. 
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4.3.9. MG63 Cell Seeding on Electrospun Membranes 

MG63 Human Osteosarcoma cell line was cultivated in standard DMEM medium (Sigma-

Aldrich, Irvine, UK) supplemented with 10% FBS (Invitrogen, Paisley, UK) and 1% 

penicillin/streptomycin (100U/ml/100 µg/ml, Invitrogen, Paisley, UK). When confluent, cells 

were trypsinized, counted, suspended into 30 µl of medium and subsequently seeded into scaffolds 

at the concentration of 7.5x104 MG63 cells/scaffold. Before cells seeding, scaffolds were placed 

one per well in a sterile 48 wells plate, UV irradiated for 15 mins and pre-soaked into standard cell 

medium for 10 mins. At the end of the soaking time, the medium was removed, and cells were 

seeded. Cell attachment was favored by incubating scaffolds at 37 °C, 5% CO2 for 15 mins and 

then 500 µl of standard medium were gently added to each scaffold. The day after, scaffolds were 

gently transferred to a fresh 48 wells plate, to avoid any contribution of cells that have not grown 

directly on the scaffolds, as done by Tampeiri et al. (2014) [48]. The medium was changed every 

2 days. MG63 cells viability and proliferation was investigated after 3 and 7 days. All cell 

manipulation procedures were conducted in a sterile laminar flow hood. 

 

4.3.10. Cell Viability Investigation by Fluorescence Microscopy 

Cell viability was qualitatively investigated using LIVE/DEAD Viability/Cytotoxicity Kit 

for mammalian cells (Invitrogen, Paisley, UK), as suggested by the manufacturer's protocol. 

Briefly, 7.5x104 MG63 cells were seeded into each electrospun scaffold as previously described 

and then incubated at 37 °C, 5% CO2 for 3 and 7 days respectively. At the end of the incubation 

period, the medium was removed, and scaffolds were incubated with Calcein acetoxymethyl 

(Calcein-AM) 2 µM plus Ethidium homodimer-1(EthD-1) 4 µM for 15 mins at 37 °C, 5% CO2, 

in the dark. At the end of the incubation time, each scaffold was gently washed with 1 ml of PBS 
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1X. Fluorescent dyes were excited and imaged using two-photon emission fluorescence (TPEF), 

while scaffolds fibers were depicted using CARS. The laser used is a HighQ picotrain laser unit 

providing a 1064 nm and a 532 nm beam [49]. The OPO beam was set at 813 nm.  The Filters used 

to read the green fluorescent were Semrock 515/42 combined with a 535/40 band-pass filter. For 

the Red fluorescent marker, the filters used were 609/54 and 640/14 band-pass filters while for the  

non-resonant CARS, the 660/13 band-pass filter was used. 

 

4.3.11. CellTiter-Blue® Cell Viability Assay on MG63  

MG63 cell viability was investigated using CTB® cell viability assay (Promega, 

Southampton, UK), respectively after 3 and 7 days from cells seeding into scaffolds. Cell viability 

was determined by using the indicator dye Resazurin, which is reduced into highly fluorescent 

Resorufin by viable cells, while non-viable cells do not to perform the reaction and so no 

fluorescence is registered. Briefly, 7.5x104 MG63 cells were suspended into 500 µl of the medium 

and seeded into each electrospun scaffold as previously described, in a 48 wells plate. Scaffolds 

were then incubated at 37 °C, 5% CO2 for 3 and 7 days respectively. At the end of the incubation 

period, 100 µl of CellTiter-Blue solution were added to scaffolds, which were incubated in an 

incubator at 37 °C, 5% CO2 for 3 h. At the end of the incubation time, the supernatants of each 

well together with the scaffolds were transferred into a fresh micro vial which was centrifuged at 

1,000 rpm for a minute. The supernatants were taken and put into a fresh micro vial and mixed by 

vortex. Then, 100 µl of the supernatants were transferred into a dark glass bottom plate, and 

fluorescence was measured with a microplate reader (Modulus™ II Microplate Multimode Reader, 

Turner Biosystems, Sunnyvale, California, USA) at 560/690 nm. Cells grown in standard medium 
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were used as controls and samples were investigated in triplicate. All data are expressed as mean 

values along with minimun and maximum values. 

 

4.3.12. In vitro Degradation of Electrospun Membranes 

Electrospun membranes of A0, A1, A2, and A3 were cut into 4 different pieces and UV 

irradiated for 15 mins for sterilization. Then, in order to study material degradation, samples were 

incubated in distilled, purified, sterile water at 37 °C, 5% CO2 for 7, 14 and 21 days. At each time 

point, samples were investigated using Raman spectroscopy. The results are the products of 20 

different spectra from 20 different locations on each sample. 

 

4.3.13. Statistical Analysis 

Results of the CTB® cell viability assay were analyzed using PRISM® version 7.0 

(GraphPad Software, San Diego, CA, USA) with 95% confidence intervals (CI) of the difference. 

Shapiro-Wilk W test was used to check the normality of the data because of its higher power for 

small sample size when compared to the other normality tests [50]. Two-way ANOVA was 

performed to examine the influence of two different categorical independent variables on a single 

dependent variable. Post-hoc Tukey Honestly Significant Difference (HSD) test was utilized to 

perform multiple pairwise comparisons when the two-way ANOVA confirmed statistical 

significance. All the analyses were conducted with the designated Type I error rate of 0.05 [51]. 
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4.4. Results and Discussion 

4.4.1. Morphology of Cryomilled Composites 

As previously mentioned in the introduction, biocomposites serve as a convenient option 

to fabricate barrier membranes that could elicit desirable biological responses from the human 

body. In this study, cryomilling, a low-temperature solid-state technique was used for the 

generation of polymer-polymer and polymer-ceramic powder blends. Cryomilling has repeatedly 

been used in the past to develop homogeneous blends of immiscible polymers [52]. It has been 

shown to produce finer grain structures in relatively shorter processing times [53]. Recently, Lim 

et al. employed cryomilling for the fabrication of polycaprolactone/TCP composites and reported 

that homogeneous dispersion could be attained even at high loading percentages of TCP [54]. 

Apart from eliminating the need for solvents and high temperatures, cryomilling also requires 

lesser energy to induce a material fracture as the entire process as the milling is done below the 

glass transition temperature of the polymers. Fig. 11 shows a micrograph of a cryomilled polymer–

ceramic blend (A3) that was generated in this study. The composite powder was found to be made 

up of particles with sharp edges, and the particle size of the composite blend was visibly smaller 

than the particle size of the materials before cryomilling. The agglomeration observed, is because 

of the presence of electrostatic, steric and van der Waals forces between the particles [55-57]. 
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Fig. 11. SEM image of PLA/CS/TCP cryomilled composite particle (A3) 

 

4.4.2. X-Ray Diffraction Analysis of Cryomilled Powders 

XRD was utilized to confirm the occurrence of a homogeneous blend PLA, CS, and TCP. 

Fig. 12 shows the XRD profiles for as-received CS, and TCP along with the profiles for the 

composite blends prepared by cryomilling. The first characteristic diffraction peak for PLA (A0) 

occurs at a 2θ value of 16.38° and the second major peak can be seen at a 2θ value of 18.76°. For 

pure CS, the only evident characteristic diffraction peak occurs at a 2θ value of 19.48°. TCP has 

two distinct diffraction peaks close to a 2θ value of 30°. The XRD profiles of A1, A2 and, A3 

showcase PLA peaks at 2θ values of 16.38° and 18.76° indicating the presence of PLA. Also, the 

presence of CS can be confirmed by observing the profiles of the composite materials close to a 

2θ value of 19.48°. It can clearly be observed that the profiles of the composite materials show 

relatively higher intensities at those points indicating the presence of CS. Similarly, the composite 

blends consisting of TCP particles have profiles with relatively higher intensities at 2θ values close 

to 30° when compared to the blends without the ceramic component. In conclusion, it can be said 

that the cryomilling process generated a homogeneous blend of materials as the composite blends 

have a unique profile that is different from the profile of the individual constituent materials. 
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Fig. 12. XRD profiles of composite blends along with their individual components 

 

4.4.3. Differential Scanning Calorimetry Analysis of Cryomilled Composites 

DSC was used for thermal characterization of the biopolymer-bioceramic powder blends 

that were prepared by cryomilling. The DSC profile of PLA (A0) (Fig. 13) clearly resembles a 

typical profile of a semi-crystalline polymer. The glass transition occurs at a temperature of 59 °C, 

and a cold crystallization can be seen as an exothermic peak beginning at around 150 ℃. The 

melting point of pure PLA was identified to be 179.5 °C which was close to the value provided by 

the manufacturer. It was observed that the addition of CS and TCP increased the glass transition 

temperature of PLA (Table 2). Based on observations made by Tanase et al. (2014), it was 

hypothesized that the movement of PLA chains was hindered by the addition of CS and TCP [58]. 

It was also identified that the melting temperature of the membranes decreased with the addition 

of TCP particles indicating the development of less crystalline materials. It was reasoned that the 
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TCP particles acted as obstacles and prevented the growth of crystal structures [59]. Table 1 also 

shows the melting point data obtained from the second heating scan. 

 
     Fig. 13. DSC second heating scans of the cryomilled composites 

 

Table 2. DSC glass transition and melting data 

Material Glass Transition (°C) Melting Point (°C) 

A0 59 179.5 

A1 60.1 178 

A2 63.3 175.4 

A3 63.9 177.2 
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4.4.4. Morphology of Electrospun Barrier Membranes 

In this study, fibrous membranes were generated using electrospinning. Bhardwaj et al. 

(2010) describe electrospinning as “a technique that uses electrostatic forces to generate thin fibers 

from polymer solutions” [60]. In the past, researchers have had tremendous success is fabricating 

polymeric fibrous scaffolds for tissue engineering applications [61]. The processing conditions in 

electrospinning, including viscosity, molecular weight of polymer, applied voltage, needle tip-

collector plate distance, solution flow rate, have been shown to have a significant effect on the 

morphology of the fibers generated [62]. The observations from the pilot studies revealed the 

inability of solvents such as dichloromethane (DCM), dimethylformamide (DMF), and chloroform 

to act as the common solvent. This phenomenon was attributed to their ionic character in dissolved 

state and three-dimensional networks of strong hydrogen bonds [63]. It was also observed that CS 

was insoluble at neutral and alkaline pH but dissolved in acidic media [64]. 

Based on observations made during the pilot study, 18-20 w/v% was identified to be the 

optimum concentration for electrospinning A0, A1, A2, and A3. Fig. 14 shows SEM images of the 

fibers that were generated from each blend along with their corresponding diameter distribution 

profiles. While comparing the fiber diameters of pure A0 and A1, it was obvious that the 

introduction of CS resulted in the generation of relatively thicker fibers. This was found to be in 

agreement the observations made by Xu at al. (2009) [65]. Hence, it was concluded that the 

increase in PLA content resulted in the disappearance of beads and resulted in a finer fiber 

morphology. It was also noted that as the content of TCP particles increased in the composite 

matrix, the fiber diameter shifted to a higher range indicating that the TCP particles were 

responsible for this increase. Yang et al. (2008) have reported similar observations while 

electrospinning PVA/CS with HA fillers [66].  

AO 
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Fig. 14. SEM images and diameter distributions of electrospun barrier membranes 
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4.4.5. Cell Viability Assay on RAW 264.7 Murine Macrophages 

The cytotoxicity of the composite cryomilled powders blend A0, A1, A2 and A3 was tested 

on murine macrophage RAW 264.7 cell line, as described in the Materials and Methods section. 

Cell viability was determined by CTB® assay (Fig. 15 (a, b)). Results indicate that 24 h after 

returning in standard medium cultivation, cell viability is statistically reduced respect to the control 

for all the concentrations tested. However, 48 h after returning in standard medium cultivation, the 

gap in cell viability between cells cultured with different cryomilled powders and controls is 

reduced and no statistical differences was notice between controls and cells cultured with powders. 

After 24 h of incubation with composite cryomilled powders blend A0, A1, A2 and A3, the cell 

morphology was investigated using BF microscopy (Fig. 16 (a – e)). The investigation revealed 

that powders particles, when in the medium, tended to agglomerate creating bigger structures, and 

macrophages grew around or all over them. There were no obvious differences in the morphology 

between macrophages cultured with composite cryomilled powders and the controls. 
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Fig. 15. CTB® assay performed on RAW 264.7 cell line incubated with composite cryomilled powders blend A0, 

A1, A2 and A3, at different concentrations, after 24 h (a) and 48 h (b) from returning in standard medium 
conditions. Results are indicated as mean with min. and max. values. 
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Fig. 16. BF microscopy of RAW 264.7 macrophages incubated for 24 hours with different composite cryomilled 

powders at concentrations a) 3 µl/ml, b) 10 µl/ml,  
c) 30 µl/ml, d) 50 µl/ml, e) control; Magnification = 200X; Scale bar = 20µm. 
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4.4.6. MG63 Cell Viability Investigation by Fluorescence Microscopy 

The viability of MG63 cells was qualitatively examined at day 3 and 7 from cell seeding 

into scaffolds by fluorescence in green, red and CARS microscopy. All the scaffolds show high 

cell viability and low number of dead cells, as shown in Fig. 17, where living cells are stained in 

green and dead cells are stained in red. Cells were able to colonize the scaffolds, growing and 

dividing on them. Moreover, scaffolds A2, A3 and A3 appeared more suitable for cell attaching 

than scaffold A0, as indicated by the pictures which show a higher number of cells growing inside 

the scaffold fibers. Scaffolds A1 and A3, in particular, were noticed to have a good cell attachment 

along scaffold fibers. 
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Fig. 17. Fluorescence microscopy on MG63 cells seeded into electrospun scaffolds.  

Living cells are green, dead cells are red. Scaffolds fibers are depicted using CARS. Scale bar = 25 µm. 
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4.4.7. MG63 Cell Viability Investigation by CellTiter-Blue® Assay 

MG63 cell viability was evaluated also by CTB® assay, at day 3 and 7 from cell seeding 

into scaffolds (Fig. 18). The results confirm the observations from the fluorescence investigation, 

showing that cells are viable at both the time points investigated. Moreover, there is an increase of 

registered fluorescence intensity, corresponding to an increase of cell viability, at day 7 respect to 

day 3, showing that cells are able to integrate inside the scaffolds and to grow on them with the 

passing of days. No statistical difference in cell viability was noticed between scaffolds types at 

both the days investigated, indicating that all the scaffolds have a comparable performance. 

 
Fig. 18. CTB® assay performed on MG63 cells seeded into electrospun scaffolds, after 3 and 7 days from cell 

seeding. Results are indicated as mean with min. and max. values. 
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4.4.8. In vitro degradation study on electrospun membranes 

Fig. 19, 20, 21 show the Raman spectra for PLA, CS and TCP respectively. The spectra 

obtained from electrospun membranes were used to explain the degradation behavior of the 

biocomposites. The investigation revealed that A0, made of 100% PLA, showed a poor 

degradation through time (Fig. 22). The slow degradation of PLA was attributed to the presence 

of hydrophobic methyl groups [67]. Sample A1 shows a degradation at day 7 which is increased 

at day 14 and day 21, particularly in the region of 1400-1500 cm-1, where the expected degradation 

is shown (Fig. 23). Sample A2 shows an unusual degradation pattern that suggests that sample is 

more degraded at day 7 and 14 than at day 21. This could be due to sample flotation as seen in A0 

(Fig. 24). Sample A3 shows the expected degradation pattern, and it is more degraded at day 14 

and 21 than at day 7 (Fig. 25). It was concluded that the addition of CS favored the degradation of 

PLA by increasing the hydrophilicity of the membrane [68]. The accelerated degradation can also 

be explained by the fact that CS is a molecule that dissolves and degrades in acidic environments 

[69]. The accelerated degradation of A1 and A2 membrane showed confirmed the hypothesis that 

the TCP particles had reduced the crystallinity of pure PLA membranes. 

 

 
Fig. 19. Raman spectra of pure PLA  Fig. 20. Raman spectra for pure CS 
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Fig. 21. Raman spectra of pure TCP 

 

 
Fig. 22. Raman spectra of A0 electrospun membrane 
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Fig. 23. Raman spectra of A1 electrospun membrane 

 

 
Fig. 24. Raman spectra of A2 electrospun membrane 
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Fig. 25. Raman spectra of A3 electrospun membrane 

 

4.5. Conclusions 

Cytotoxicity test on powders used for scaffolds creation revealed a toxicity for 

macrophages, as their viability is reduced 24 h after returning in standard conditions after 

incubation with powders respect to the untreated controls. However, this effect could be due to the 

tendency of the powders to form large agglomerates when in suspension and not because of the 

toxicity of the materials used, as all the materials that have been utilized have known biocompatible 

properties [19-21] [35-38] [39-41]. When nanoparticles aggregate, cytotoxicity could arise from 

many factors such as particle charge, extent of aggregation and cell type used and it is difficult to 

define in a generic way which of them are predominant on macrophages cytotoxicity [70, 71]. 

However, after 48 h from returning in standard medium cultivation, viability of macrophages 

incubated with powders is comparable with the one of controls. This could be interpreted as a 

transient toxicity of powders, meaning that when powders are removed from cell medium, cells 
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recover their viability and proliferation activity. In addition to that, electrospun fibers scaffolds 

formed by these powders show a good biocompatibility and they appear suitable for osteoblast-

like cells adhesion and proliferation. MG63 cells show a good attachment to scaffolds fibers and 

cells growth increases with the passing of days. Also, the biocomposite membranes showed a 

better degradation behavior when compared to pure PLA membranes. 
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CHAPTER V 

GENERAL CONCLUSIONS 

5.1. Conclusions 

This study presented the fabrication and characterization of novel PLA/CS/TCP 

biocomposites. Further, electrospun barrier membranes were generated using these biocomposites, 

and their suitability for GBR was evaluated using RAW 264.7 murine macrophages and MG63 

cells. This chapter summarizes the conclusions that were drawn from this specific study and also 

validates some of the critical inferences from research works published on the topic of interest.  

 

5.1.1. Fabrication of PLA/CS/TCP Powder Composites 

 This study validated the use of a solid-state blending technique called cryomilling for the 

generation of powder composites made of PLA, CS, and TCP. As reported by Lim et al. (2014), a 

total milling time of 20 mins resulted in an obvious decrease in particle size of the constituent 

materials and the generation of homogeneous blends of PLA, CS, and TCP [48]. The occurrence 

of a homogeneous blend was confirmed using XRD. Cryomilling, being a solid-state, low-

temperature blending technique eliminates problems such as the use of high temperature, need for 

block copolymers, solvents and the possibility of oxidation [241, 259]. Additionally, results from 

the pilot studies conducted also showed that homogeneous dispersion could be attained even at 

high loading percentages of ceramic particles. This observation was in agreement with the 

observations made by Lim et al. (2014) [48]. PLA and CS have very different polarities and hence 

achieving a compatible blend of these materials poses a challenge [47]. However, cryomilling 

helps decrease the particle size of the dispersed phase and enhances the attractive interaction and 
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thereby helps overcome the challenge of immiscibility. Moreover, when TCP is dissolved in 

solvents for processing, the rheological properties limit its loading, with the occurrence of 

aggregation and delamination [48]. In conclusion, this study reiterates the potential of cryomilling 

in blending materials for the generation of biocomposites. 

 

5.1.2. Fabrication of PLA/CS/TCP Electrospun Membranes  

 Electrospinning was used to generate barrier membranes from the cryomilled 

biocomposites. Electrospinning was chosen as the ideal fabrication technique based on its success 

in regenerative applications [292-296]. TFA was able to act as the common solvent for the purpose 

of fiber generation. The observations from the pilot studies revealed the inability of solvents like 

DCM, DMF, and chloroform to create a solution of the powder composites. This phenomenon was 

attributed to CS’s ionic character in dissolved state and three-dimensional networks of strong 

hydrogen bonds [47].  Based on the visual characterization performed with SEM, it can be 

concluded that the decrease in PLA concentration in the powder composites resulted in thicker 

fibers. This observation was in agreement with the results already reported by Xu et al. (2009) 

[306]. Additionally, the electrospun scaffolds were able to support the growth of MG63 cells when 

tested under in-vitro conditions. In conclusion, this study provides evidence that electrospun 

membrane made out of PLA, CS, and TCP can be used for the purpose of bone regeneration. 

 

5.1.3. In-vitro Studies of Powder and Electrospun Membranes 

 In this study, RAW 264.7 murine macrophages were used to test the cytocompatibility of 

the powder composites in different concentrations (3 µl/ml, 10 µl/ml, 30 µl/ml and 50 µl/ml). 



www.manaraa.com

72 
 

 

CTB® cell viability assay was used to quantitatively analyze cell viability after 24 and 48 h of 

placement in the culture medium. BF microscopy was used to qualitatively evaluate the 

morphology of the macrophages. The results from the cell viability test indicated that the generated 

powder composites were not toxic to cells and hence can be used to fabricate scaffolds for BTE. 

Then, the electrospun membranes were evaluated for their capability to support and enhance the 

growth of MG63 cells. The cell viability of each material was investigated using CTB® cell 

viability assay after 3 and 7 days from cell seeding. CARS was used to perform a live/dead assay 

to qualitatively analyze the ability of the scaffolds to support cell growth. The results from the 

live/dead assay demonstrated the viability of the scaffolds, showing more green cells (viable) than 

red cells (dead). The test also revealed that the cells were viable and metabolically active both after 

3 and 7 days from cell seeding. The cell viability assay also indicated that the scaffolds were 

suitable for growing MG63 cells. The degradation results showed that the addition of CS and TCP 

accelerated the degradation of PLA membranes. In conclusion, this study validated the use of 

cryomilled PLA/CS/TCP biocomposites in scaffold-based GBR. 

 

5.2. Review of Contributions 

In this study, cryomilling was used to successfully generate novel biodegradable polymer-

bioactive ceramic composites for the fabrication of barrier membranes to be used for the 

regeneration of periodontal bone defects. The results of the in vitro cell studies indicated the 

suitability of the biocomposites for regenerative applications. 
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5.3. Future Perspectives 

There is much scope for the development of newer materials and the associated research in BTE. 

A few aspects that need better understanding and stronger validation are listed in this section.  

 Firstly, different compositions of similar composite materials need to be analyzed to 

identify and develop the “ideal” membrane. The validation of such materials can be strengthened 

by testing them in both in-vitro and in vivo environments. Another potential area of research could 

be the evaluation of this composite material for use in additive fabrication techniques. Bioprinting 

of these composites could give researchers a greater control over the morphology and dimensions 

of the scaffold produced. There is also need to understand the influence of cryomilling at a 

microscopic level and structural changes that it imparts to the materials. Moreover, the influence 

of cryomilling time on the cell viability of the materials needs to be explored. The influence of 

membrane geometry on cell viability needs investigation. A multivariate analysis needs to be 

performed to better understand the degradation characteristics of the barrier membranes. 
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APPENDIX STATISTICAL ANALYSIS 

In this study, statistical analyses (Two-way ANOVA with post hoc Tukey’s test) were performed 

to assist in evaluating the credibility of the results obtained from the In vitro studies. The analyses 

were carried out with PRISM ver. 7.0 software. For all the tests, values of p<0.05 were taken to 

indicate statistical significance (95% confidence level). This section intends to summarize all the 

details of the statistical analyses that were performed.  

 

1. Analyses for CTB® Cell Viability Assay with RAW 264.7 Murine Macrophages 

The cytotoxicity test was conducted with three samples in each treatment group, they were 

all tested under the same condition within each group, so the measured fluorescence intensity 

values were expected to have the same distribution. The samples were prepared individually and 

tested in individual wells. So, it was assumed that the observed values of fluorescence intensity 

under each treatment were independent and identically distributed random variables. This 

experiment had two independent variables, namely, material composition (A0, A1, A2, and A3) 

and powder concentration (3 µl/ml, 10 µl/ml, 30 µl/ml and 50 µl/ml). The fluorescence intensity 

values obtained from the micro-plate reader was the only dependent variable. 

Three major assumptions needed to be satisfied before the use of a two-way ANOVA test. 

As previously mentioned, the independence of cases assumption was met by preparing and testing 

samples individually. The homogeneity of variance assumption was also checked before 

proceeding with the parametric test. The Shapiro-Wilk W test was used to test for normality of the 
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data as it has been shown to have a higher power in case of small sample sizes in comparison to 

other normality tests [307]. The corresponding null hypothesis was that the fluorescence intensity 

values were normally distributed. Fig. 1 and Fig. 2 show sample results of the Shapiro-Wilk W 

Test for the cytotoxicity tests performed after 24 and 48 h from cell seeding (A1-3 µl/ml 

combination). 

  
 Fig.1. Normality test results for A1-3 µl/ml (24 h)    Fig. 2. Normality test results for A1-3 µl/ml (48 h) 
In the Shapiro-Wilk W Test, the test statistic is calculated using the following equation, 

𝑊𝑊𝑡𝑡 = (∑ 𝑎𝑎𝑖𝑖𝑥𝑥(𝑖𝑖)
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     (A.1) 

In equation A.1, ith ordered statistic in the entire data set is given by𝑥𝑥(𝑖𝑖), 𝑥𝑥 �  is the mean of all 

statistics and 𝑎𝑎𝑖𝑖 is given by equation A.2 as described below, 

(𝑎𝑎𝑖𝑖, 𝑎𝑎𝑖𝑖, … … . ,𝑎𝑎𝑖𝑖) = 𝑚𝑚𝑇𝑇𝑉𝑉−1
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      (A.2)  

In equation A.2, m is defined as A.3, 

m = (𝑚𝑚1,𝑚𝑚2, … … … ,𝑚𝑚𝑛𝑛)𝑇𝑇      (A.3) 

In A.3, 𝑚𝑚𝑖𝑖 are the expected values of the order statistics of independent and identically distributed 

random variables sampled from the standard normal distribution and in A.2, V is the covariance 

matrix of those order statistics. The value of W lies between zero and one. Small values of W lead 

to the rejection of normality whereas a value closer to one indicates normality of the data. 

When the analysis was conducted, p values less than 0.05 were observed for all the treatment 

combinations, and hence, it was concluded that fluorescence intensity values were normally 
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distributed. Moreover, it also meant that the two-way ANOVA with post hoc Tukey’s test could 

be used to statistically evaluate the difference between the means. In this study, the cells grown in 

the standard medium were used as controls. 

The result of the two-way ANOVA test conducted for the samples cultured for  

24 h is shown below in Fig. 3. The value of p for material composition was 0.0001 which was less 

than the designated Type I error rate of 0.005. Thus, it was concluded that the material composition 

had a considerable influence on the survival of the macrophages. However, the value of p for 

powder concentration was 0.0580. Hence, it was concluded that the concentration of the powder 

did not have a statistically significant influence on the survival of the macrophages. It was also 

seen that the independent variables did not have a statistically significant interaction effect on the 

dependent variable. However, in the case of statistical significance, the Tukey’s test was performed 

to identify the groups that had a significant difference between them. 

 

 
Fig. 3. Two-way ANOVA results for cytotoxicity test with macrophages (24 h) 
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The Tukey’s test conducted for the samples cultured for 24 h revealed that the material 

compositions were statistically different from the control group but otherwise, A0, A1, A2 and A3 

did not differ significantly from each other. Fig. 4 shows the results of the Tukey’s test. The 

Tukey’s test is calculated based on the equation A.4, 

𝑞𝑞𝑠𝑠 = 𝑌𝑌𝐴𝐴−𝑌𝑌𝐵𝐵
𝑆𝑆𝑆𝑆

       (A.4) 

where 𝑌𝑌𝐴𝐴the larger of the two means being compared is, 𝑌𝑌𝐵𝐵 is the smaller of the two means being 

compared, and SE is the standard error of the data in question. 
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Fig. 4. Tukey’s test results for pairwise comparisons of material compositions (24 h) 
 

Similar analyses were done to analyze the data obtained from samples cultured for 48 h in 

the medium. The results indicated that the material composition had a statistically significant 

influence on the survival and proliferation of macrophages. Further, the value of p for powder 

concentration was also less than 0.05, and hence it was concluded that the concentration of the 

powder also had a statistically significant influence on the macrophages. However, it was seen that 

the independent variables did not have an interaction effect that was statistically significant. The 

Tukey’s test was performed to further analyze to identify the groups that had a statistical difference 

between them. Fig. 5 shows the results obtained from the two-way ANOVA test while Fig. 6 and 

Fig. 7 represent the results obtained from the Tukey’s tests.  

         
Fig. 5. Two-way ANOVA results for cytotoxicity test with macrophages (48 h) 
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Fig. 6. Tukey’s test to identify the statistically differing material compositions (48 h) 

 

The results of the Tukey’s test (Fig. 6) revealed that at some concentrations, certain 

materials differed statistically from the control group. However, there was no difference between 

the different materials used except in one case (A0 vs. A3 at 3 µl/ml). 
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Fig. 7. Tukey’s test to identify the statistically differing powder concentrations (48 h) 

 

The results of the second Tukey’s test (Fig. 7) revealed that in most cases the use of 

different powder concentrations did not have a significant impact on the survival of the 

macrophages except in three cases. 

 

2. Analysis for CTB® Cell Viability Assay with MG63 cells 

The statistical analysis for the study with MG63 cells was conducted the same way as it 

was conducted for the cytotoxicity test with macrophages. In this case, the independent variables 

were material composition and cell culture time. Moreover, it was ensured that the obtained results 

obeyed the three major assumptions of two-way ANOVA. The results of two-way ANOVA 
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revealed that the materials did not have a significant difference between them indicating that the 

materials tested were comparable. However, as expected, there was a significant statistical 

difference between the fluorescence intensity values obtained from the electrospun membranes 

seeded for 3 days and the ones seeded for 7 days (Fig. 8). This result was used to conclude that the 

cells were able to colonize and proliferate with the passage of time. 

 
Fig. 8. Two-way ANOVA results for the electrospun membranes tested with MG63 cells 
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